

PB-003-1173003 Seat No. _____

M. Sc. (Statistics) (Sem. III) (CBCS) Examination May / June - 2018

MS - 303 : Optimizing Techniques

Faculty Code: 003

Subject Code: 1173003

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70

Instructions: (1) Attempt all questions.

(2) Each question carries equal marks.

1 Answer the following : (Any Seven) 14

- Define Zero sum game. (i)
- Write limitation of Arithmetic Method for solution of (ii) 2×2 game.
- (iii) Name the types of variables added in LP problem to convert it into Standard form.
- (iv) Give second name of Big-M Method.
- Name three methods to obtain an initial solution for (v) Transportation Problem.
- (vi) When any Transportation problem is said to be Unbalanced?
- (vii) Define: Slack variable and Surplus Variable.
- (viii) Define Feasible Solution.
- (ix) Define Unbounded Solution.
- (x) Define Two person game.

2 Answer the following: (Any Two)

- **14**
- (1) Explain types of failure in Replacement problem.
- (2) Solve given LP problem using Big-M method.

Min
$$Z = 600X_1 + 500X_2$$

S to C $2X_1 + X_2 \ge 80$
 $X_1 + 2X_2 \ge 60$
 $X_1, X_2 \ge 0$

(3) Find an optimal solution for given transportation problem :

	$D_{\mathbf{l}}$	D_2	D_3	D_4	Supply
S_1	2	3	11	7	6
S_2	1	0	6	1	1
S_3	5	8	15	9	10
Demand	7	5	3	2	

3 Answer the following:

14

- (1) Explain strategy in game theory.
- (2) Explain mathematical formulation of LP problem

OR

3 Answer the following:

14

- (1) Explain steps for PERT and CPM techniques.
- (2) Solve given assignment problem using Hungarian method:

	Ι	II	III	IV	
A	42	35	28	21	
В	30	25	20	15	
C	30	25	20	15	
D	24	20	60	12	

- 4 Answer the following: (Any Two)
 - (1) Define following terms:
 - (i) Basic feasible solution
 - (ii) Unbounded solution
 - (iii) Surplus variable.
 - (2) Write a brief note on Simplex Method.
 - (3) A project is represented by given activity and task with original schedule time of a completing a project is 40.5 weeks.

Activity	1-2	1-3	1-4	2-5	2-6	3-6	4 – 7	5 – 7	6 – 7
Task	A	В	C	D	E	F	G	Н	I
Optimistic timte	5	18	26	16	15	6	7	7	3
Pessimistic time	10	22	40	20	25	12	12	9	5
Most Likely time	8	20	33	18	20	9	10	8	4

Determine the following:

- (1) Expected task times and their variance.
- (2) The earliest and latest expected times to reach each event.
- (3) The critical path.
- 5 Answer the following: (Any Two)

14

14

- (1) Define following terms:
 - (i) Lead time
 - (ii) Stock replenishment time
 - (iii) Planning horizon
- (2) Explain EOQ model with no shortage.
- (3) Solve the following LP problem using graphical method:

$$Max Z = 6x_1 - 4x_2$$

S. to. c
$$2x_1 + 4x_2 \le 4$$

$$4x_1 + 8x_2 \le 16$$

where
$$x_1, x_2 \ge 0$$
.

(4) Explain $M/M/1: \infty/FIFO$ queuing model.